If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1600=18x^2
We move all terms to the left:
1600-(18x^2)=0
a = -18; b = 0; c = +1600;
Δ = b2-4ac
Δ = 02-4·(-18)·1600
Δ = 115200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{115200}=\sqrt{57600*2}=\sqrt{57600}*\sqrt{2}=240\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-240\sqrt{2}}{2*-18}=\frac{0-240\sqrt{2}}{-36} =-\frac{240\sqrt{2}}{-36} =-\frac{20\sqrt{2}}{-3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+240\sqrt{2}}{2*-18}=\frac{0+240\sqrt{2}}{-36} =\frac{240\sqrt{2}}{-36} =\frac{20\sqrt{2}}{-3} $
| 5x-10=3x+13 | | 3c+9=7 | | 2x2+4x-9=0 | | x2-2x=146 | | -(5x*3x)=0 | | (-x)-14=-19 | | (x-2)(2x+1)(x-1/3)=0 | | n+8=102 | | 2/3(y-1)=3y-17 | | p=1.260-3(25-20)+27 | | 6x(x+2)=5(1+x) | | x+15/2=2x | | 5^3t-1=8 | | 6x+4=-66-x | | X+2=4-3(x+2) | | -6x+4=-66-x | | 2y/5+15=75 | | (x-1)/4=(x-3)/5 | | x-1/4=x-3/5 | | 55/3x=1375 | | 10p+7=6p-13 | | 3x=10+4x/3 | | 10-2y=2410 | | 32000=x+x/13,5 | | 10-2y=24 | | 22000=x+(x/13,5) | | x-2/5=23 | | (7x-2)/5=x+2 | | 5x2+70x+335=0 | | 5x2+70x+335=5x2+70x+335=00 | | 22000=x+x/13,5 | | 5x-0.5=0.125+x |